

Diseño y desarrollo de baterías de flujo redox poliméricas y de tipo airflow para aplicaciones de baja potencia

(ENER01-4)

Institución Proponente: Facultad de Ingeniería - FIUNA - UNA

Sitio web: http://www.ing.una.py/

Objetivo General del Proyecto

Diseñar y desarrollar baterías de flujo redox de polímeros y de tipo airflow que mejoren la capacidad de almacenamiento para aplicaciones en sistemas de baja potencia con un enfoque en la maximización de la integración y valorización de las energías renovables, para establecer una cadena de valor innovadora y sostenible que promueva la eficiencia energética y la reducción de la huella de carbono en aplicaciones de baja potencia.

Resultados Esperados

- 1. Obtención de los polímeros redox, basados en polielectrolitos y moléculas orgánicas, como fluidos electroactivos para mejorar la capacidad de almacenamiento a partir del diseño y desarrollo.
- 2. Sintetizar materiales electrocatalíticos basados en nanoestructuras de carbono dopadas con heteroátomos de N, S y B.
- 3. Obtener baterías de flujo redox poliméricas completas y baterías de flujo redox O2-polímero a partir de un diseño y simulación detallados.
- 4. Generar una propuesta de cadena de valor innovadora que impulse la integración de energías renovables en sistemas de baja potencia.
- 5. Al menos un (01) articulo científico presentado o aceptado para publicación en revistas internacional y/o nacional indexada en SCOPUS/SCIMAGO/WOS que se encuentren en los cuartiles 1,2 o 3 de los índices de impacto.
- 6. Al menos una (01) participación en carácter de ponencia o poster presentada en encuentros científicos internacionales y/o nacionales (seminarios, congresos, etc.).

Monto Financiado por Conacyt (G)	Monto Contrapartida (G)	Monto Total (G)	Monto Transferido (G)	Rendicion Presenta (Monto Conacyt) (G)
500.000.000	0	500.000.000	400.000.000	10.500.000

Estado del Proyecto:

Modalidad: Proyectos Asociativos de Innovación y Desarrollo Tecnológico

Tipo de Organización: Pública

Objetivos Socioeconómicos

Nabs: 5.9|5.9. OTRAS TECNOLOGÍAS DE ENERGÍA Y DE ALMACENAMIENTO|Otras tecnologías de

energía y de almacenamiento

UNESCO: 3303|3303. INGENIERIA Y TECNOLOGIA QUIMICAS |Ingeniería y tecnología químicas

OCDE: 1.4|1.4. CIENCIAS DE LA TIERRA Y CIENCIAS RELACIONADAS CON EL MEDIO AMBIENTE (GEOLOGÍA, GEOFÍSICA, MINERALOGÍA, GEOGRAFÍA FÍSICA Y OTRAS CIENCIAS DE LA TIERRA, METEOROLOGÍA Y OTRAS CIENCIAS DE LA ATMÓSFERA INCLUYENDO LA INVESTIGACIÓN CLIMÁTICA, OCEANOGRAFÍA, VULCANOLOGÍA, PALEOECOLOGÍA, OTRAS CIENCIAS AFINES)|Ciencias Químicas

ISIC:

Contratos/ Adendas

#	Descripción	Firma	Inicio	Fin ejecución	Fin vigencia
1	CONTRATO IB PÚBLICA N°	23/09/2024	23/09/2024	23/09/2026	22/12/2026
	2024-C1-				
	ENER01-04				

Miembros de equipo

#	Nombres	Rol	Resumen de Formacion
1	Laura Regina León Ovelar	Director del proyecto	rrrr
2	TOBIAS RAMIRO FILIPPINI	Investigadores Asociados (nacionales o extranjeros)	Doctorando en Química Inorgánica, Química Analítica y Química Física (INQUIMAE)
3	MATÍAS EZEQUIEL REGUEIRO PSCHEPIURCA	Investigadores Asociados (nacionales o extranjeros)	Licenciado en Ciencias Químicas de la Facultad de Ciencias Exactas y Naturales - UBA (Abril 2015 - Febrero 2021). Desde agosto 2017 a diciembre 2018 desarrollé tareas como pasante en el Laboratorio de Biosensores y Bioanálisis (LABB) - IQUIBICEN donde me aboqué a tareas de

#	Nombres	Rol	Resumen de Formacion
			investigación relacionadas
			al uso de aptámeros
			fluorescentes como
			método rápido para la
			identificación de proteínas
			mediante electroforesis en
			papel. A partir de marzo
			2019 hasta la actualidad
			comencé a realizar una
			pasantía en el Laboratorio
			de Organometálica -
			INQUIMAE en un proyecto
			en el que se busca
			sintetizar y caracterizar
			metaloporifirinas con las
			características apropiadas
			para su empleo en
			baterías de flujo redox.
4	LUCY LINDERS CORIA	Investigadores Asociados	Presento experiencia
	ORIUNDO	(nacionales o extranjeros)	síntesis y caracterización
			de materiales poliméricos
			para su uso en sistemas
			de conversión de energía.
			Principalmente se ha
			desarrollado síntesis de
			polielectrolitos redox con
			complejos de osmio al
			cual se le puede modificar
			el potencial modificando
			los ligandos, y de esa
			manera se puede dirigir y
			optimizar el proceso al
			cual en el cual será
			aplicado. Actualmente, se
			están sintetizando
			diversos tipos de
			polímeros con centros
			redox orgánicos. Además,
			he estudiado y construido
			sistemas
			autoensamblados que
			incluyan la presencia de

#	Nombres	Rol	Resumen de Formacion
#	Nombres	Rol	mediadores redox, enzimas, iones mono y divalentes y entrecruzantes, a fin de ser utilizados para procesos de degradación, procesos catalíticos así como en construcción de celdas de combustible enzimáticas. Además cuento con conocimientos acerca de clonado y
			producción de enzimas recombinantes.
5	Laura Regina León Ovelar	Investigadores Principales (nacionales o extranjeros)	rrrr
6	ERNESTO GUEVARA LEAL MANICOBA	Investigadores Asociados (nacionales o extranjeros)	Formación en el área de energía eléctrica, complementada con estudios en seguridad laboral y educación científica. Es Máster en Energía Eléctrica por la Universidad Federal de Rio Grande do Norte (Brasil), donde desarrolló el trabajo titulado "Desarrollo de Software para el Análisis de la Calidad de Energía en Microrredes con Fuentes Renovables" (2025),
7	JOSÉ LUIS PINEDA DELGADO	Investigadores Asociados (nacionales o extranjeros)	Doctor en Electroquímica por el Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), México, donde desarrolló la tesis "Diseño de placas de apriete y de flujo utilizando simulación de

#	Nombres	Rol	Resumen de Formacion
			elemento finito para la
			construcción de un
			compresor electroquímico
			de hidrógeno" (2019).
			Master en Electroquímica
			(CIDETEQ, 2015), con un
			trabajo enfocado en el
			"Estudio del desempeño
			de membranas de
			intercambio protónico
			modificadas en sistemas
			de compresión
			electroquímica".
8	Osvaldo David Frutos	Investigadores Asociados	Grado: Ing. Industrial
	González	(nacionales o extranjeros)	Posgrado: Ing. Química y
			Ambiental
9	Ana Pamela Arevalos	Investigadores en	Grado: Ing. Industrial
	Ferreira	formación	Posgrado: Maestría en Ing.
			Industrial
10	Andrea María Insfrán	Investigadores Asociados	Grado: Ing. Industrial.
	Rivarola	(nacionales o extranjeros)	Posgrado: Doctorado en
			Ing. Industrial. Línea de
			investigación:
			optimización, Lean Six
			Sigma, Métodos y
			Procesos.